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Chapter Three 

Fourier Series 

 

1- Periodic Function: 

 
A periodic function is a function for which a specific horizontal shift, P, results in the 

original function 𝑓(𝑥 + 𝑃) = 𝑓(𝑥) for all values of x. When occurs we call the smallest 

such horizontal shift with 𝑃 > 0 the period of the function. 

 

 
 

Notice how the sine values are positive between 0 and 𝜋, which correspond to the 

values of sine in quadrants 1 and 2 on the unit circle, and the sine values are negative 

between 𝜋 and 2𝜋, which correspond to the values of sine in quadrants 3 and 4. Like the 

sine function, we can track the values of the cosine function through the 4 quadrants of the 

unit circle as we place it on a graph. 

 

 

 

 

 

  

 Both of these functions are defined for all real numbers, since we can evaluate the 

sine and cosine of any angle. By thinking of sine and cosine as coordinates of points on a 

unit circle, it becomes clear that the range of both functions must be the interval [-1,1]. 

Both these graphs are called sinusoidal graphs. In both graphs, the shape of the graph 

begins repeating after 2𝜋. Indeed, sine any conterminal angles will have the same sine and 

cosine values, we could conclude that sin(𝜃 + 2𝜋) = sin⁡(𝜃) and cos(𝜃 + 2𝜋) = cos⁡(𝜃). 

In other words, if you were to shift either graph horizontally by 2𝜋, the resulting shape 
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would be identical to the original function. Sinusoidal functions are a specific type of 

periodic function. 

 

 

 

 

 

 

The sine function is symmetric about the origin, the same symmetry the cubic function has 

making it an odd function. The cosine function is clearly symmetric about the y axis, the 

same symmetry as the quadratic function, making it an even function. 

 

𝑇ℎ𝑒⁡𝑠𝑖𝑛𝑒⁡𝑖𝑠⁡𝑎𝑛⁡𝑜𝑑𝑑⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐⁡𝑎𝑏𝑜𝑢𝑡⁡𝑡ℎ𝑒⁡𝑜𝑟𝑖𝑔𝑖𝑛. 𝑆𝑜⁡𝑠𝑖𝑛𝑒(−𝜃) = −sin⁡(𝜃) 

 

𝑇ℎ𝑒⁡𝑐𝑜𝑠𝑖𝑛𝑒⁡𝑖𝑠⁡𝑎𝑛⁡𝑒𝑣𝑒𝑛⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐⁡𝑎𝑏𝑜𝑢𝑡⁡𝑡ℎ𝑒⁡𝑦 − 𝑎𝑥𝑖𝑠. 𝑆𝑜⁡𝑐𝑜𝑠(−𝜃) = cos⁡(𝜃) 

 

These identities can be used among other purposes. For helping with simplification and 

proving identities. 

 

2- Even and odd functions 
 

We have many an odd and an even functions, such as: 

 𝑜𝑑𝑑⁡𝑝𝑜𝑤𝑒𝑟𝑠⁡𝑜𝑓⁡𝑥⁡𝑖𝑠⁡𝑜𝑑𝑑:⁡⁡5𝑥3 − 3𝑥   

 𝑒𝑣𝑒𝑛⁡𝑝𝑜𝑤𝑒𝑟𝑠⁡𝑜𝑓⁡𝑥⁡𝑖𝑠⁡𝑒𝑣𝑒𝑛:⁡⁡ − 𝑥6 + 4𝑥4 + 𝑥2 − 3 

 

 𝑡ℎ𝑒⁡𝑝𝑟𝑜𝑑𝑢𝑐𝑡⁡𝑜𝑓⁡𝑡𝑤𝑜⁡𝑜𝑑𝑑⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠⁡𝑖𝑠⁡𝑒𝑣𝑒𝑛:⁡⁡𝑥𝑠𝑖𝑛𝑥⁡ 
 

 𝑡ℎ𝑒⁡𝑝𝑟𝑜𝑑𝑢𝑐𝑡⁡𝑜𝑓⁡𝑡𝑤𝑜⁡𝑒𝑣𝑒𝑛⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠⁡𝑖𝑠⁡𝑒𝑣𝑒𝑛:⁡⁡𝑥2𝑐𝑜𝑠𝑥 

 

 𝑡ℎ𝑒⁡𝑝𝑟𝑜𝑑𝑢𝑐𝑡⁡𝑜𝑓⁡𝑎𝑛⁡𝑜𝑑𝑑⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛⁡𝑎𝑛𝑑⁡𝑎𝑛⁡𝑒𝑣𝑒𝑛⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛⁡𝑖𝑠⁡𝑜𝑑𝑑:⁡⁡𝑠𝑖𝑛𝑥⁡𝑐𝑜𝑠𝑥 

 

The all six trigonometric function are periodic: 

 

1. sin(x+2π)=sin(x), the period sin(x) is equal to P=2π 

 

The graph of sin(x) is shown below with one cycle, in red, whose length over the x axis is 

equal to one period P given by: 𝑃 = 2𝜋 − 0 = 2𝜋 
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2. cos(x+2π)=cos(x), the period cos(x) is equal to P=2π 

3. sec(x+2π)=sec(x), the period sec(x) is equal to P=2π 

4. csc(x+2π)= csc (x), the period csc (x) is equal to P=2π 

5. tan(x+π)= tan (x), the period tan (x) is equal to P=π 

6. cot(x+π)= cot (x), the period cot (x) is equal to P=π 

 

The graph of tan(x) is shown below with one cycle, in red, whose length over the x axis is 

equal to one period P given by: 𝑃 =
𝜋

2
− (−

𝜋

2
) = 𝜋 

  

 
 

If P is the period of f(x), then the period of 𝐴𝑓(𝑏𝑥 + 𝑐) + 𝐷⁡is given by 
𝑃

|𝑏|
 

If P is the period of f(x), then the period of 𝑓(𝑥 + 𝑛𝑃) = 𝑓(𝑥), for n integer. 

 

▶ Use the period of the trigonometric functions to find the period of each function 

given below: 

 

1. 𝑓(𝑥) = sin⁡(0.5𝑥) 

2. 𝑔(𝑥) = tan⁡(2𝑥 +
𝜋

6
) 

3. ℎ(𝑥) = cos⁡(−
2

3
𝑥 − 𝜋) 
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4. 𝑗(𝑥) = sec(𝜋𝑥 − 2) 

5. 𝑘(𝑥) = cot⁡(−
2𝜋

3
𝑥) 

1. The period of sin⁡(𝑥) is 2𝜋. We used above formula to find the period: 

∵ ⁡𝑠𝑖𝑛(𝑥 + 2𝜋) = 𝑠𝑖𝑛(𝑥), 𝑡ℎ𝑒⁡𝑝𝑒𝑟𝑖𝑜𝑑⁡𝑠𝑖𝑛(𝑥)⁡𝑖𝑠⁡𝑒𝑞𝑢𝑎𝑙⁡𝑡𝑜⁡𝑃 = 2𝜋 

∴ 𝑓(𝑥) = sin(0.5𝑥) → ⁡
𝑃

|𝑏|
=

2𝜋

|0.5|
= 4𝜋 

2. The period of tan⁡(𝑥) is 𝜋. We used above formula to find the period: 

∵ 𝑡𝑎𝑛(𝑥 + 𝜋) = ⁡𝑡𝑎𝑛⁡(𝑥), 𝑡ℎ𝑒⁡𝑝𝑒𝑟𝑖𝑜𝑑⁡𝑡𝑎𝑛⁡(𝑥)⁡𝑖𝑠⁡𝑒𝑞𝑢𝑎𝑙⁡𝑡𝑜⁡𝑃 = 𝜋 

∴ 𝑔(𝑥) = tan (2𝑥 +
𝜋

6
) → ⁡

𝑃

|𝑏|
=

𝜋

|2|
=

𝜋

2
   ◀ 

 

2.1- More on Periodic Function: 
 

Any two points making a cycle as shown in the graph below: 

 

𝑃 = 𝑥1 − 𝑥2 = 𝑥3 − 𝑥4⁡ 

 

 
 

If P denotes the period for any value of t, we get 

 

𝑓(𝑡 + 𝑃) = 𝑓(𝑡) 
For example: 

 

𝑠𝑖𝑛(𝑡 + 2𝜋) = 𝑠𝑖𝑛(𝑡)   and    𝑐𝑜𝑠(𝑡 + 2𝜋) = 𝑐𝑜𝑠(𝑡) 
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The fact that the period is 𝜋 follows is a sinusoid of amplitude 1 and period  
2𝜋

2
= 𝜋 

because 

𝑠𝑖𝑛2(𝑡 + 𝜋) = 𝑠𝑖𝑛⁡(2𝑡 + 2𝜋) = 𝑠𝑖𝑛(2𝑡) 
For any value of t. 

 

 

In general 𝑦 = 𝐴⁡𝑠𝑖𝑛⁡𝑛𝑡⁡has amplitude A, period 
2𝜋

𝑛
 and completes n oscillations when t 

changes by 2𝜋. Formally, we define the frequency of a sinusoid as the reciprocal of the 

period: 

 

frequency =
1

𝑝𝑒𝑟𝑖𝑜𝑑
 

and the angular frequency as: 

 

angular⁡frequency = 2π × frequency =
2𝜋

𝑝𝑒𝑟𝑖𝑜𝑑
 

 

Thus  𝑦 = 𝐴⁡𝑠𝑖𝑛⁡𝑛𝑡 has frequency 
𝑛

2𝜋
 and angular frequency 𝑛. 

 

▶ State the amplitude, period, frequency, and angular frequency of: 
 

a) 𝑦 = 5 cos 4𝑡         

b) 𝑦 = 6 cos
2𝑡

3
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a) Amplitude 5, period 
2𝜋

4
=

𝜋

2
 , frequency 

2

𝜋
, and angular frequency 4 

b) Amplitude 6, period 3𝜋 , frequency 
1⁡

3𝜋
, and angular frequency 

2

3
 ◀ 

 

2.2 Non-Sinusoidal period functions: 

The following are examples of non- sinusoidal functions and they are often called 

waves. 

1. Square Wave 

Analytically we can describe this function as follows: 

𝑓(𝑡) = {
−1⁡⁡⁡⁡⁡⁡⁡⁡ − 𝜋 < 𝑡 < 0
⁡⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 < 𝑡 < 𝜋

} 

𝑓(𝑡 + 2𝜋) = 𝑓(𝑡) Which tell us that the function has period 2𝜋. 

 

 
2. Saw-tooth Wave 

In this case, we can describe the function as follows: 

 

𝑓(𝑡) = 2𝑡⁡⁡⁡⁡⁡⁡⁡0 < 𝑡 < 2 

𝑓(𝑡 + 2) = 𝑓(𝑡) Which tell us that the function has period 2. 

 

The frequency is  
1

2
, and the angular frequency is 𝜋. 

 

 
 

3. Triangular Wave 

Here we can conveniently define the function using −𝜋 < 𝑡 < 𝜋 as the basic period. 

𝑓(𝑡) = {
−𝑡⁡⁡⁡⁡⁡⁡⁡⁡ − 𝜋 < 𝑡 < 0
⁡⁡⁡⁡𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 < 𝑡 < 𝜋

} 
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or, more concisely, 

 

𝑓(𝑡) = |𝑡| ⁡⁡⁡⁡⁡⁡− 𝜋 < 𝑡 < 𝜋 

Together with the usual statement on periodicity 

𝑓(𝑡 + 2𝜋) = 𝑓(𝑡) 
 

 

▶⁡Write an analytic definition for the following periodic function: 

 

 
 

𝑓(𝑡) = {
2 − 𝑡⁡⁡⁡⁡⁡⁡⁡⁡0 < 𝑡 < 3
⁡⁡⁡−1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡3 < 𝑡 < 5

} 

 

𝑓(𝑡 + 5) = 𝑓(𝑡) ◀ 

▶⁡Sketch the graphs of the following periodic functions showing all relevant values: 

(a) 𝑓(𝑡) = {
𝑡2 2⁄ ⁡⁡⁡⁡⁡⁡⁡0 < 𝑡 < 4

⁡⁡⁡
8
0
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

4 < 𝑡 < 6
6 < 𝑡 < 8

} ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝑡 + 8) = 𝑓(𝑡) 

(b) 𝑓(𝑡) = 2𝑡 − 𝑡2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 < 𝑡 < 2⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝑡 + 2) = 𝑓(𝑡) 
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3- Fourier Series: 

We have already mentioned that Fourier series may be used to represent some functions for 

which a Taylor series expansion is not possible. The particular conditions that a function f(x) 

must fulfil in order that it may be expanded as a Fourier series are known as the Dirichlet 

conditions, and may be summarised by the following four points: 

(i) the function must be periodic; 

(ii)  it must be single-valued and continuous, except possibly at a finite number of finite 

discontinuities; 

(iii)  it must have only a finite number of maxima and minima within one period; 

(iv)  the integral over one period of |f(x)| must converge. 

If the above conditions are satisfied then the Fourier series converges to f(x) at all points where 

f(x) is continuous. The last three Dirichlet conditions are almost always met in real applications, 

but not all functions are periodic and hence do not fulfil the first condition. An example of a 

function that may, without modification, be represented as a Fourier series is shown in figure 3.1. 

 

Figure 3.1: An example of a function that may be represented as a Fourier series without 

modification. 

It is possible to represent all odd functions by a sine series and all even functions by a cosine 

series. Now, since all functions may be written as the sum of an odd and an even part, 

𝑓(𝑥) ⁡= ⁡
1

2
[𝑓(𝑥) ⁡+ ⁡𝑓(−𝑥)] ⁡+⁡

1

2
⁡[𝑓(𝑥) ⁡− ⁡𝑓(−𝑥)] ⁡= ⁡𝑓𝑒𝑣𝑒𝑛(𝑥) ⁡+ ⁡𝑓𝑜𝑑𝑑(𝑥), 

we can write any function as the sum of a sine series and a cosine series.  
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All the terms of a Fourier series are mutually orthogonal, i.e. the integrals, over one period, of the 

product of any two terms have the following properties: 

∫ 𝑠𝑖𝑛⁡ (
2𝜋𝑟𝑥

𝐿
) ⁡⁡𝑐𝑜𝑠⁡ (

2𝜋𝑝𝑥

𝐿
) ⁡⁡⁡𝑑𝑥⁡ = ⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑥0+𝐿

𝑥0

⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙⁡𝑟⁡𝑎𝑛𝑑⁡𝑝……………(102) 

∫ 𝑐𝑜𝑠⁡ (
2𝜋𝑟𝑥

𝐿
⁡) ⁡𝑐𝑜𝑠⁡ (

2𝜋𝑝𝑥

𝐿
) ⁡⁡⁡𝑑𝑥⁡ = ⁡{

𝐿⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑟 = 𝑝 = 0
1

2
𝐿⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑟 = 𝑝 > 0

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑟 ≠ 𝑝⁡⁡⁡⁡⁡⁡⁡⁡

}⁡
𝑥0+𝐿

𝑥0

……………(103) 

∫ 𝑠𝑖𝑛⁡ (
2𝜋𝑟𝑥

𝐿
) ⁡⁡𝑠𝑖𝑛⁡ (

2𝜋𝑝𝑥

𝐿
) ⁡⁡⁡𝑑𝑥⁡ = ⁡{

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑟 = 𝑝 = 0
1

2
𝐿⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑟 = 𝑝 > 0

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑟 ≠ 𝑝⁡⁡⁡⁡⁡⁡⁡⁡

}⁡
𝑥0+𝐿

𝑥0

……………(104) 

 

where r and p are integers greater than or equal to zero; these formulae are easily derived. 

The Fourier series expansion of the function f(x) is conventionally written: 

𝑓(𝑥) = ⁡
𝑎0⁡
2
⁡+∑⁡[𝑎𝑟 ⁡𝑐𝑜𝑠⁡ (

2𝜋𝑟𝑥

𝐿
)⁡⁡+⁡𝑏𝑟 ⁡𝑠𝑖𝑛⁡ (

2𝜋𝑟𝑥

𝐿
)⁡]

∞

𝑟=1

……………(105) 

where⁡𝑎0⁡, 𝑎𝑟, 𝑏𝑟 are constants called the Fourier coefficients.  

 

3.1- The Fourier coefficients: 

We have indicated that a series that satisfies the Dirichlet conditions may be written in the form 

(105). We now consider how to find the Fourier coefficients for any particular function. For a 

periodic function f(x) of period L we will find that the Fourier coefficients are given by: 

𝑎𝑟 =
2

𝐿
∫ 𝑓(𝑥)⁡𝑐𝑜𝑠⁡ (

2𝜋𝑟𝑥

𝐿
) ⁡⁡⁡𝑑𝑥⁡……………(106)

𝑥0+𝐿

𝑥0

 

 

𝑏𝑟 =
2

𝐿
∫ 𝑓(𝑥)⁡𝑠𝑖𝑛⁡ (

2𝜋𝑟𝑥

𝐿
) ⁡⁡⁡𝑑𝑥⁡……………(107)

𝑥0+𝐿

𝑥0
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where 𝑥0 is arbitrary but is often taken as 0 or −L/2. The apparently arbitrary factor 
1

2
 which 

appears in the 𝑎0⁡ term in (104) is included so that (105) may apply for r = 0 as well as r > 0. The 

relations (105) and (106) may be derived as follows. 

Suppose the Fourier series expansion of f(x) can be written as in (105) 

 

𝑓(𝑥) = ⁡
𝑎0⁡
2
⁡+∑⁡[𝑎𝑟 ⁡𝑐𝑜𝑠⁡ (

2𝜋𝑟𝑥

𝐿
)⁡⁡+⁡𝑏𝑟 ⁡𝑠𝑖𝑛⁡ (

2𝜋𝑟𝑥

𝐿
)⁡]

∞

𝑟=1

 

Then, multiplying by cos(2πpx/L), integrating over one full period in x and changing the order of 

the summation and integration, we get 

 

∫ 𝑓(𝑥)

𝑥0+𝐿

𝑥0

𝑐𝑜𝑠⁡ (
2𝜋𝑝𝑥

𝐿
) ⁡⁡⁡𝑑𝑥

= ⁡
𝑎0⁡
2

∫ ⁡𝑐𝑜𝑠⁡ (
2𝜋𝑝𝑥

𝐿
) ⁡⁡⁡𝑑𝑥⁡

𝑥0+𝐿

𝑥0

+∑⁡⁡[𝑎𝑟 ⁡ ∫ 𝑐𝑜𝑠⁡ (
2𝜋𝑟𝑥

𝐿
⁡) ⁡𝑐𝑜𝑠⁡ (

2𝜋𝑝𝑥

𝐿
)

𝑥0+𝐿

𝑥0

⁡𝑑𝑥⁡

∞

𝑟=1

+⁡𝑏𝑟 ∫ ⁡𝑐𝑜𝑠⁡ (
2𝜋𝑟𝑥

𝐿
) ⁡⁡⁡𝑠𝑖𝑛⁡ (

2𝜋𝑝𝑥

𝐿
)⁡

𝑥0+𝐿

𝑥0

⁡𝑑𝑥]……………(108) 

 

We can now find the Fourier coefficients by considering (107) as p takes different values. Using 

the orthogonality conditions (102) – (104) of the previous section, we find that when p = 0 (108) 

becomes 

∫ 𝑓(𝑥)

𝑥0+𝐿

𝑥0

⁡⁡⁡𝑑𝑥 = ⁡
𝑎0⁡
2
𝐿 

When 𝑝 ≠ 0 the only non-vanishing term on the RHS of (107) occurs when r = p, and so 
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∫ 𝑓(𝑥)

𝑥0+𝐿

𝑥0

𝑐𝑜𝑠⁡ (
2𝜋𝑟𝑥

𝐿
⁡) ⁡⁡𝑑𝑥 = ⁡

𝑎𝑟⁡
2
𝐿 

 

The other Fourier coefficients br may be found by repeating the above process but multiplying by 

sin(2πpx/L) instead of cos(2πpx/L) 

∫ 𝑓(𝑥)

𝑥0+𝐿

𝑥0

𝑠𝑖𝑛⁡ (
2𝜋𝑟𝑥

𝐿
⁡) ⁡⁡𝑑𝑥 = ⁡

𝑏𝑟⁡
2
𝐿 

▶Express the square-wave function illustrated in figure 3.2 as a Fourier series. 

 

Figure 3.2: A square-wave function. 

The square wave may be represented by 

𝑓(𝑡) = {
−1⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡⁡⁡⁡⁡ −

1

2
𝑇 < 𝑡 < 0

⁡⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 < 𝑡 <
1

2
𝑇

} 

In deriving the Fourier coefficients, we note firstly that the function is an odd function and so the 

series will contain only sine terms (this simplification is discussed further in the following 

section). To evaluate the coefficients in the sine series we use (106). Hence 

𝑏𝑟 =
2

𝑇
∫ 𝑓(𝑡)⁡𝑠𝑖𝑛⁡ (

2𝜋𝑟𝑡

𝑇
) ⁡⁡⁡𝑑𝑡⁡

𝑇 2⁄

−𝑇 2⁄

 

𝑏𝑟 =
4

𝑇
∫ ⁡𝑠𝑖𝑛⁡ (

2𝜋𝑟𝑡

𝑇
) ⁡⁡⁡𝑑𝑡

𝑇 2⁄

0
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𝑏𝑟 =
2

𝜋𝑟
[1 − (−1)𝑟] 

Thus the sine coefficients are zero if r is even and equal to 4/(πr) if r is odd. Hence the Fourier 

series for the square-wave function may be written as 

𝑓(𝑡) = ⁡
4

𝜋
(sin𝑤𝑡 +

sin 3𝑤𝑡

3
+⁡

sin 5𝑤𝑡

5
+ ⋯)……………(109) 

where ω = 2π/T is called the angular frequency. ◀ 

▶Sketch a graph of 𝑓(𝑥) in the interval −2𝜋 < 𝑥 < 2𝜋 and Fourier series representation of 

𝑓(𝑥). 

𝑓(𝑥) = {
𝑥 ⁡𝑓𝑜𝑟 ⁡0 < 𝑥 < 𝜋
𝜋 𝑓𝑜𝑟 ⁡𝜋 < 𝑥 < 2𝜋

} ⁡⁡⁡⁡⁡𝑎𝑛𝑑⁡ℎ𝑎𝑠⁡𝑝𝑒𝑟𝑖𝑜𝑑⁡2𝜋 

 

 

𝑎0⁡ =
2

𝐿
∫ 𝑓(𝑥)

𝑥0+𝐿

𝑥0

⁡⁡⁡𝑑𝑥 =
1

𝜋
⁡∫ 𝑓(𝑥)𝑑𝑥⁡

𝜋

0

+
1

𝜋
⁡∫ 𝑓(𝑥)𝑑𝑥

2𝜋

𝜋

=
1

𝜋
⁡∫ 𝑥⁡𝑑𝑥⁡

𝜋

0

+
1

𝜋
⁡∫ 𝜋. 𝑑𝑥

2𝜋

𝜋

 

𝑎0⁡ =
1

𝜋
⁡[
𝑥2

2
]
0

𝜋

+⁡[𝑥]𝜋
2𝜋 =

3𝜋

2
 

𝑎𝑛⁡ =
2

𝐿
∫ 𝑓(𝑥)

𝑥0+𝐿

𝑥0

⁡⁡cos 𝑛𝑥 𝑑𝑥 = ⁡
1

𝜋
⁡∫ 𝑥 cos 𝑛𝑥 𝑑𝑥⁡

𝜋

0

+
1

𝜋
⁡∫ 𝜋 . cos 𝑛𝑥 𝑑𝑥

2𝜋

𝜋

 

𝑎𝑛⁡ =⁡
1

𝜋
⁡[[𝑥

sin 𝑛𝑥

𝑛
]
0

𝜋

−∫
sin 𝑛𝑥

𝑛
⁡𝑑𝑥⁡

𝜋

0

] +
𝜋

𝜋
⁡[
sin 𝑛𝑥

𝑛
]
𝜋

2𝜋

=
1

𝑛2𝜋
(cos 𝑛𝜋 − 1) 

𝑎𝑛⁡ =
1

𝑛2𝜋
((−1)𝑛 − 1) = { −

2

𝑛2𝜋
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑛⁡𝑜𝑑𝑑

⁡⁡⁡⁡⁡⁡⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑛⁡𝑒𝑣𝑒𝑛
} 
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𝑏𝑛⁡ =
2

𝐿
∫ 𝑓(𝑥)

𝑥0+𝐿

𝑥0

⁡⁡sin 𝑛𝑥 𝑑𝑥 = ⁡
1

𝜋
⁡∫ 𝑥 sin 𝑛𝑥 𝑑𝑥⁡

𝜋

0

+
1

𝜋
⁡∫ 𝜋. sin 𝑛𝑥 𝑑𝑥

2𝜋

𝜋

 

𝑏𝑛⁡ =⁡
1

𝜋
⁡[[−𝑥

cos 𝑛𝑥

𝑛
]
0

𝜋

+∫
cos𝑛𝑥

𝑛
⁡𝑑𝑥⁡

𝜋

0

] −
𝜋

𝜋
⁡[
cos 𝑛𝑥

𝑛
]
𝜋

2𝜋

= −
1

𝑛
(−1)𝑛 −

1

𝑛
(1 − (−1)𝑛) 

𝑏𝑛⁡ = −
1

𝑛
 

We now have: 

𝑓(𝑥) = ⁡
𝑎0⁡
2
⁡+∑ ⁡[𝑎𝑛⁡𝑐𝑜𝑠⁡𝑛𝑥⁡ +⁡𝑏𝑛⁡𝑠𝑖𝑛⁡𝑛𝑥⁡]

∞

𝑛=1

 

𝑓(𝑥) =
3𝜋

4
−
2

𝜋
∑

1

𝑛2
⁡cos 𝑛𝑥

∞

𝑛=1,3,5,….

−∑
1

𝑛
⁡sin 𝑛𝑥

∞

𝑛=1

 

 

 

4- Complex Fourier series: 

As a Fourier series expansion in general contains both sine and cosine parts, it may be written 

more compactly using a complex exponential expansion. This simplification makes use of the 

property that 𝑒𝑥𝑝(𝑖𝑟𝑥) = cos 𝑟𝑥 ⁡+ ⁡𝑖 sin 𝑟𝑥. The complex Fourier series expansion is written 

 

𝑓(𝑥) = ⁡ ∑ ⁡𝑐𝑟 ⁡𝑒𝑥𝑝 (
2𝜋𝑖𝑟𝑥

𝐿
)⁡

∞

𝑟=−∞

……………(110) 

where the Fourier coefficients are given by 

H.W. Sketch a graph of 𝑓(𝑥) in the interval −3𝜋 < 𝑥 < 3𝜋 and show that the Fourier 

series in the interval −𝜋 < 𝑥 < 𝜋. 

𝑓(𝑡) = {
0 ⁡𝑓𝑜𝑟 −𝜋 < 𝑥 < 0
𝑥 𝑓𝑜𝑟 ⁡0 < 𝑥 < 𝜋

} ⁡⁡⁡⁡⁡𝑎𝑛𝑑⁡ℎ𝑎𝑠⁡𝑝𝑒𝑟𝑖𝑜𝑑⁡2𝜋 

 



14 
 

𝑐𝑟⁡ =
1

𝐿
∫ 𝑓(𝑥)

𝑥0+𝐿

𝑥0

⁡⁡𝑒𝑥𝑝 (−
2𝜋𝑖𝑟𝑥

𝐿
)𝑑𝑥 ……………(111) 

This relation can be derived, in a similar manner to that of section 3.1, by multiplying (108) by 

exp(−2πipx/L) before integrating and using the orthogonality relation: 

∫ 𝑒𝑥𝑝 (−
2𝜋𝑖𝑝𝑥

𝐿
)

𝑥0+𝐿

𝑥0

⁡⁡𝑒𝑥𝑝 (
2𝜋𝑖𝑟𝑥

𝐿
)𝑑𝑥 = {

𝐿 𝑓𝑜𝑟 𝑟 = 𝑝
0 𝑓𝑜𝑟 𝑟 ≠ 𝑝

}……………(112) 

The complex Fourier coefficients in (108) have the following relations to the real Fourier 

coefficients: 

𝑐𝑟⁡ =
1

2
(𝑎𝑟 − 𝑖⁡𝑏𝑟) 

                                                                             ……………..(113) 

𝑐−𝑟⁡ =
1

2
(𝑎𝑟 + 𝑖⁡𝑏𝑟) 

Note that if 𝑓(𝑥)⁡ is real then 𝑐−𝑟⁡ = 𝑐𝑟
∗, where the asterisk represents complex conjugation. 

▶Find a complex Fourier series for 𝑓(𝑥) ⁡= ⁡𝑥 in the range −2⁡ < 𝑥 < ⁡2. 

Using (109), for 𝑟 ≠ 0, 

𝑐𝑟⁡ =
1

𝐿
∫ 𝑓(𝑥)

𝑥0+𝐿

𝑥0

⁡⁡𝑒𝑥𝑝 (−
2𝜋𝑖𝑟𝑥

𝐿
)𝑑𝑥 =

1

4
∫𝑥

2

−2

⁡⁡𝑒𝑥𝑝 (−
𝜋𝑖𝑟𝑥

2
) 𝑑𝑥 

𝑐𝑟⁡ = [−
𝑥

2𝜋𝑖𝑟
⁡𝑒𝑥𝑝 (−

𝜋𝑖𝑟𝑥

2
)]

−2

2

+
1

2𝜋𝑖𝑟
∫𝑒𝑥𝑝 (−

𝜋𝑖𝑟𝑥

2
) 𝑑𝑥

2

−2

⁡⁡ 

𝑐𝑟⁡ = −
1

𝜋𝑖𝑟
⁡[𝑒𝑥𝑝(−𝜋𝑖𝑟) + 𝑒𝑥𝑝(𝜋𝑖𝑟)] + [−

𝑥

𝜋2𝑟2
⁡𝑒𝑥𝑝 (−

𝜋𝑖𝑟𝑥

2
)]

−2

2

⁡ 

𝑐𝑟⁡ =
2𝑖

𝜋𝑟
cos 𝜋𝑟 +

2𝑖

𝜋2𝑟2
sin 𝜋𝑟 =

2𝑖

𝜋𝑟
(−1)𝑟 

For r = 0, we find c0 = 0 and hence 
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𝑓(𝑥) = ⁡ ∑
2𝑖

𝜋𝑟
(−1)𝑟 ⁡𝑒𝑥𝑝 (

𝜋𝑖𝑟𝑥

2
)⁡

∞

𝑟=−∞
𝑟≠0

 

We note that the Fourier series derived for x gives 𝑎𝑟 = 0 for all r and 𝑏𝑟 ⁡= ⁡
−4(−1)𝑟

𝜋𝑟
 , and so, 

using (111), we confirm that 𝑐𝑟⁡ and 𝑐−𝑟⁡have the forms derived above. It is also apparent that the 

relationship 𝑐−𝑟⁡ = 𝑐𝑟
∗, holds, as we expect since 𝑓(𝑥)⁡is real. ◀ 

 

▶Find the exponential Fourier series and corresponding frequency spectra for the function f(t) 

shown. 

 

 

 

 

 

Using (109), for 𝑟 ≠ 0, 

𝑐𝑛⁡ =
1

𝐿
∫ 𝑓(𝑡)

𝑥0+𝐿

𝑥0

⁡⁡𝑒𝑥𝑝 (−
2𝜋𝑖𝑛𝑡

𝐿
) 𝑑𝑡 = 2∫ e−𝑡

0.5

0

⁡⁡𝑒𝑥𝑝(−4𝑛𝜋𝑡𝑖)⁡𝑑𝑡 

𝑐𝑛⁡ = 2∫ e−(1+4𝑛𝜋𝑖)𝑡
0.5

0

⁡𝑑𝑡 = ⁡2 [
e−(1+4𝑛𝜋𝑖)𝑡

−(1 + 4𝑛𝜋𝑖)
]
0

0.5

 

𝑐𝑛⁡ =
−2

(1 + 4𝑛𝜋𝑖)
{e−⁡

(1+4𝑛𝜋𝑖)
2 − 1} =

2

(1 + 4𝑛𝜋𝑖)
{1 − e−⁡

1
2e−⁡2𝑛𝜋𝑖} 

Since e−⁡2𝑛𝜋𝑖 = 1⁡⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡e−⁡
1

2 = 0.607⁡⁡ 

𝑐𝑛⁡ =
2(1 − 0.607)

(1 + 4𝑛𝜋𝑖)
≈

0.79

(1 + 4𝑛𝜋𝑖)
⁡ 

𝑓(𝑡) = ⁡ ∑
0.79

(1 + 4𝑛𝜋𝑖)
⁡⁡𝑒4𝑛𝜋𝑡𝑖 ⁡

∞

𝑛=−∞

 

 

𝑓(𝑡) = 𝑒−𝑡  


