Chapter Three

Fourier Series

1- Periodic Function:

A periodic function is a function for which a specific horizontal shift, P, results in the
original function f(x + P) = f(x) for all values of x. When occurs we call the smallest
such horizontal shift with P > 0 the period of the function.
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Notice how the sine values are positive between 0 and 7, which correspond to the
values of sine in quadrants 1 and 2 on the unit circle, and the sine values are negative
between 7 and 27, which correspond to the values of sine in quadrants 3 and 4. Like the
sine function, we can track the values of the cosine function through the 4 quadrants of the
unit circle as we place it on a graph.

£(6) =sin(8) 7(8) = cos (8)
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Both of these functions are defined for all real numbers, since we can evaluate the
sine and cosine of any angle. By thinking of sine and cosine as coordinates of points on a
unit circle, it becomes clear that the range of both functions must be the interval [-1,1].
Both these graphs are called sinusoidal graphs. In both graphs, the shape of the graph
begins repeating after 27, Indeed, sine any conterminal angles will have the same sine and
cosine values, we could conclude that sin(6 + 2m) = sin(8) and cos(6 + 2m) = cos(6).
In other words, if you were to shift either graph horizontally by 2, the resulting shape
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would be identical to the original function. Sinusoidal functions are a specific type of
periodic function.
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The sine function is symmetric about the origin, the same symmetry the cubic function has
making it an odd function. The cosine function is clearly symmetric about the y axis, the
same symmetry as the quadratic function, making it an even function.

The sine is an odd function, symmetric about the origin.So sine(—6) = —sin(0)
The cosine is an even function, symmetric about the y — axis.So cos(—8) = cos(0)

These identities can be used among other purposes. For helping with simplification and
proving identities.

2- Even and odd functions

We have many an odd and an even functions, such as:

odd powers of x is odd: 5x3 — 3x

e even powers of x is even: —x%+ 4x*+ x? —3

the product of two odd functions is even: xsinx

the product of two even functions is even: x*cosx

the product of an odd function and an even function is odd: sinx cosx
The all six trigonometric function are periodic:
1. sin(x+2x)=sin(x), the period sin(x) is equal to P=2x

The graph of sin(x) is shown below with one cycle, in red, whose length over the x axis is
equal to one period P given by: P = 2mr — 0 = 27
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T y = sin(x)
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cos(x+2m)=cos(x), the period cos(x) is equal to P=2n
sec(x+2m)=sec(x), the period sec(x) is equal to P=2x
csc(x+2m)= csc (X), the period csc (x) is equal to P=2x

tan(x+xz)= tan (x), the period tan (x) is equal to P=x

o g bk~ w D

cot(x+x)= cot (x), the period cot (x) is equal to P=x

The graph of tan(x) is shown below with one cycle, in red, whose length over the x axis is

equal to one period P given by: P = % - (— g) =7

If P is the period of f(x), then the period of Af (bx + ¢) + D is given by I%I
If P is the period of f(x), then the period of f(x + nP) = f(x), for n integer.

» Use the period of the trigonometric functions to find the period of each function
given below:

1. f(x) =sin(0.5x)
2. g(x) =tan(2x + %)
3. h(x) = cos(—%x — 1)



4. j(x) = sec(mx — 2)
5 k(x) = cot(—z?”x)
1. The period of sin(x) is 2. We used above formula to find the period:
v sin(x + 2m) = sin(x), the period sin(x) is equal to P = 2n
P 2T

. f(x) = sin(0.5x) - ] = 050 =

41

2. The period of tan(x) is . We used above formula to find the period:

v tan(x + ) = tan (x), the period tan (x) isequaltoP =m

T P T T
.-g(x)—tan(2x+g)—> Bl =2 <

2.1- More on Periodic Function:
Any two points making a cycle as shown in the graph below:
P=X1—x2 =x3—X4

One cycle
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If P denotes the period for any value of t, we get

fiE+P)=f()

For example:

sin(t + 2m) = sin(t) and cos(t + 2m) = cos(t)
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The fact that the period is 7 follows is a sinusoid of amplitude 1 and period 27” =1

because
sin2(t + m) = sin (2t + 2m) = sin(2t)

For any value of t.

3 = sin 24
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In general y = A sin nt has amplitude A, period 27” and completes n oscillations when t
changes by 2. Formally, we define the frequency of a sinusoid as the reciprocal of the

period:
1

f —
requency period

and the angular frequency as:
21

lar f = 2m X f =
angular frequency = 2m X frequency period

Thus y = A sin nt has frequency % and angular frequency n.
P State the amplitude, period, frequency, and angular frequency of:

a) y =5cos4t
b) y = 6cos%



a) Amplitude 5, period %ﬂ = %, frequency %, and angular frequency 4

b) Amplitude 6, period 37, frequency 31—”, and angular frequencyg <

2.2 Non-Sinusoidal period functions:

The following are examples of non- sinusoidal functions and they are often called
waves.
1. Square Wave

Analytically we can describe this function as follows:

(-1 —T<t<0
f(t)_{ 1 0<t<ﬂ}
f(t+ 2m) = f(t) Which tell us that the function has period 2.

T

2. Saw-tooth Wave
In this case, we can describe the function as follows:

f)=2t 0<t<?2
f(t+ 2) = f(t) Which tell us that the function has period 2.

The frequency is %, and the angular frequency is 7.
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3. Triangular Wave

Here we can conveniently define the function using — < t < m as the basic period.

ro={", T0iild)
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or, more concisely,
f=1t| —-n<t<m

Together with the usual statement on periodicity

f(t+2m) = f(0)

} f(t)
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P Write an analytic definition for the following periodic function:

L f(2)

ro={" %)

fE+5)=f(t) <
» Sketch the graphs of the following periodic functions showing all relevant values:

t2/2 0<t<4

(@) f(t)={8 4<t<6} and  f(t+8)=f(t)
0 6<t<8

(b) f(t) =2t —t? 0<t<2 f(t+2)=f(t)

b F(E)
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3- Fourier Series:

We have already mentioned that Fourier series may be used to represent some functions for
which a Taylor series expansion is not possible. The particular conditions that a function f(x)
must fulfil in order that it may be expanded as a Fourier series are known as the Dirichlet
conditions, and may be summarised by the following four points:

(i)  the function must be periodic;

(i) it must be single-valued and continuous, except possibly at a finite number of finite

discontinuities;

(ili) it must have only a finite number of maxima and minima within one period;

(iv)  the integral over one period of [f(x)| must converge.

If the above conditions are satisfied then the Fourier series converges to f(x) at all points where
f(x) is continuous. The last three Dirichlet conditions are almost always met in real applications,
but not all functions are periodic and hence do not fulfil the first condition. An example of a
function that may, without modification, be represented as a Fourier series is shown in figure 3.1.

f(x)

i

Figure 3.1: An example of a function that may be represented as a Fourier series without
modification.

It is possible to represent all odd functions by a sine series and all even functions by a cosine
series. Now, since all functions may be written as the sum of an odd and an even part,

1 1
f) =) + f0] + 5 f(x) — f(=x)] = feven(x) + fodd(x),

we can write any function as the sum of a sine series and a cosine series.



All the terms of a Fourier series are mutually orthogonal, i.e. the integrals, over one period, of the
product of any two terms have the following properties:

Xotl  2mrx 2mpx
j sin ( ) cos ( ) dx = 0 forallrandp ...............(102)
. L L
L forr=p=0
XotL 21X 2mpx 1
j cos ( > cos ( ) dx = { =L forr=p>0; e (103)
Xy L L 2
0 forr #p
0 forr=p=0
Xotl  2mrx\ | /2mpx 1
sin ( ) sin ( ) dx = { =L forr=p>0p cuinn.n.. (104)
X L L 2
0 forr #p

where r and p are integers greater than or equal to zero; these formulae are easily derived.

The Fourier series expansion of the function f(x) is conventionally written:

flx) = a70 +§: [ar cos (272rx> + b, sin (2721%)} cer e een e 0 (105)

where a, , a,., b, are constants called the Fourier coefficients.

3.1- The Fourier coefficients:

We have indicated that a series that satisfies the Dirichlet conditions may be written in the form
(105). We now consider how to find the Fourier coefficients for any particular function. For a
periodic function f(x) of period L we will find that the Fourier coefficients are given by:

a, = %fx:o“f(x) cos (272rx) dx ... ... (106)
b, = %f:ﬂf(x) sin (anx) X oo (107)



where x, is arbitrary but is often taken as 0 or —L/2. The apparently arbitrary factor % which

appears in the a, term in (104) is included so that (105) may apply forr =0 as well asr > 0. The
relations (105) and (106) may be derived as follows.

Suppose the Fourier series expansion of f(x) can be written as in (105)

flx) = a70 +2 [ar cos (272”) + b, sin (21Ter)]

Then, multiplying by cos(2zpx/L), integrating over one full period in x and changing the order of
the summation and integration, we get

Xo+L

J f(x)cos <27Tpr> dx

Xo+L

_ Qg j (anx> p
= cos |\ — X

X0

X0 +L

- 21X 2TTpx
+Z arfcos(L>cos(L>dx
r=1 Xg

Xo+L

2TrX . (2mpx
+ brf cos( I ) Sm( 7 ) dx| ..o e ... (108)

X0

We can now find the Fourier coefficients by considering (107) as p takes different values. Using

the orthogonality conditions (102) — (104) of the previous section, we find that when p = 0 (108)
becomes

x0+L
a

f f(x) dx=70L

When p # 0 the only non-vanishing term on the RHS of (107) occurs when r = p, and so
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Xo+L
2Trx
) dx = —L

Jf(x)cos( I

The other Fourier coefficients b, may be found by repeating the above process but multiplying by

sin(2rpx/L) instead of cos(2npx/L)
XO+L
21rx b,
) dx = 7[;

j f(x) sin (

» Express the square-wave function illustrated in figure 3.2 as a Fourier series.
f(t)

1
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=
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Figure 3.2: A square-wave function.

The square wave may be represented by

1
-1 for —§T<t<0

F(o) = )
O<t<ET

1 for

In deriving the Fourier coefficients, we note firstly that the function is an odd function and so the
series will contain only sine terms (this simplification is discussed further in the following

section). To evaluate the coefficients in the sine series we use (106). Hence
) 2 (T/2 O si <2nrt> e
= — sin | —

. _4{”2 _ <2nrt> it
r=7) sin (—
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b, =2 "
r=—[1- (1]

Thus the sine coefficients are zero if r is even and equal to 4/(nr) if r is odd. Hence the Fourier
series for the square-wave function may be written as

sin3wt  sin 5wt
ey o +..-)...............(109)

4/
f(t) = p- (sm wt +
where w = 2z/T is called the angular frequency. <«

» Sketch a graph of f(x) in the interval —2m < x < 2w and Fourier series representation of

f ().

_(x for 0<x<m _
f(x)—{n for n<x<2n} and has period 2m
Sx)
T
0 '.l'c 2'1't
X
x0+L
2 1 T 1 21 1 T 1 21
ao _Zf f(x) dx-;jof(x)dx +EL f(x)dx-;]oxdx +EL . dx
Xo
1 x2]" . 3T
a =—|5| + " ==
0
x0+L
2 1 T 1 21
a, =—f f(x) cosnxdx = —j x cosnx dx +—f .cosnx dx
L T J, T ),
Xo
1 sinnx1” Tsinnx T [sin nx1*" 1
a, = — [x ] —f dx +—[ ] =——(cosnw —1)
s nly J n nl n 1, n?m
1 - dd
0 neven
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x0+L

2 1 T 1 21

b, =—f f(x) sinnxdx = —f x sinnx dx +—f 7. sinnx dx
L T J, T ),

X0

= e [ ] T e

T n 0 n T n T
1
bn =—E
We now have:
ag - .
f(x) = > +z [a,, cos nx + b, sinnx |
n=1
(32 i 1 il
f(x)= R — cosnx - sinnx
n=1,3,5,.... n=1

H.W. Sketch a graph of f(x) in the interval —3m < x < 3w and show that the Fourier
series in the interval —m < x < .

0 for —m<x<0
x for 0<x<m

f) = { } and has period 2m

4- Complex Fourier series:

As a Fourier series expansion in general contains both sine and cosine parts, it may be written
more compactly using a complex exponential expansion. This simplification makes use of the
property that exp(irx) = cosrx + isinrx. The complex Fourier series expansion is written

(00]

fx) = Z Cr exp (2n£rx> cer e e e (110)

rr=—00

where the Fourier coefficients are given by
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x0+L

f f(x) exp( 2mrx)dx...............(111)

This relation can be derived, in a similar manner to that of section 3.1, by multiplying (108) by
exp(—2ripx/L) before integrating and using the orthogonality relation:

x0+L

2Tipx 2Tirx (L for r=p
j exp(— I )exp( I )dx—{o for r;tp}"""""""'(llz)

X0

The complex Fourier coefficients in (108) have the following relations to the real Fourier
coefficients:

_1( i b
r _E a, —1 r)

1
Cr = E(ar +1ib;)

Note that if f(x) is real then c_,. = c;;, where the asterisk represents complex conjugation,
» Find a complex Fourier series for f(x) = xintherange -2 <x < 2.

Using (109), for r + 0,

x0+L 2
_ 2mirx 1 mirx
22
. 2 : ]
X ( mrx>] N 1 j <_ m) dx
Cr = 2TiT exp 2 — 2mir exp 2
22
. x Tirx
2 . L
€y = —CosTr + —sinmr = m"( )

For r = 0 we find ¢y = 0 and hence
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F= Y =1y e ()

T=—00
r+0

—-4(-1)"

We note that the Fourier series derived for x gives a,, = 0 for all r and b, = , and so,

using (111), we confirm that ¢, and c_,- have the forms derived above. It is also apparent that the
relationship c_, = c;, holds, as we expect since f(x) is real. €

» Find the exponential Fourier series and corresponding frequency spectra for the function f(t)
shown.

ft)=et

[
[

e

0 0.5 1 t
Using (109), for r # 0,
Xot+L 0.5
1 2mint
tn =7 f f(t) exp (— T )dt = 2f e~ exp(—4nmti) dt
%o 0

0.5 e—(1+4nn0t 0.5
c. =2 e—(1+4—n17:i)t dt = 2
n j —(1 + 4nmi)
0 0
-2 (1+4nmi) 2 1 -
c, =———je 2 —1}=—_{1—e_§e‘ }
" (14 4nmi) { (1 + 4nmi)

1

Sincee 2" =1 qgnd e z = 0.607

2(1-0.607) 0.79
““ T A+ 4nmi) (1 + 4nmi)

0.79

fO= 2 Tramm &

n=—oo
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